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Abstract

,\{ |
Fritsch and Carlson [3] developed an algorithm which produces a monotome C1

piecewise cubic interi’olut to a monotone function. We showv that the

algorithm yields a third-order approxzimation, while s modification is

fourth—order accurate.
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1, Iatrodunstion.
In addition to being a good approxzimation to the function, it is

often desirable that an interpolamt reproduoces such properties as

P ior

_monnegativity, momotonicity, and comvexity. In this paper, we analyze

three aslgorithms which produce monotone 01 pioccevise cubic interpolanmts to

s monotone function.

A ) Since the interpolant is a piscevise ocubic, ope would hope that such
an algorithe would yield a third- or fourth—order L. approximation whenever
the function interpolated is sufficieatly smooth. However, if the
algorithm (considered as a map from the set of monotone functions to the

set of monotone C1 picooviie cubics) is linear, then it is at best first—

f order accurate (see de Boor and Swartz [2]). Comsequently, if greater
i T ) accuracy is desired, the algorithm must be nonlinear.
E
1 } ’ Fritsch and Carlson [3] proposed such an algorithm. Given an imitial o

C1 piecewise cubic interpolant, they modify the derivative values of that
intezpolant (where mecessary) to produce a monotone C1 piecewise cubic
interpolant. Since the modification process is monlinear, ome might hope

that the Fritsch~Carlson Algorithm is more thans first-order accurate.

In Section 2, we revievw the Fritsch-Carlson Algorithm and preseat two
modifications, the Two—Sweep and Extended Two-Sweep Algorithms, which also
produce momotone C1 piecewise cubic iaterpolants. In Section 3, we prove

that all three algoritims yield third—-order L. approximations to s C3

1 monotone function. However, in Section 4, we demonstrate that meither the

Fritsch-Carlson Algoritim nor the Two-Sweep Algorithm is a fourth-order |
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i method, where, in the case of the latter slgorithm, we assume that the

initial approximate derivative values are not fourth-order sccurate, On

the other hand, the Extonded Two~Sweep Algorithm is a fourth—order method

--if the initisl approximate derivative valmes sre third—order sccurate.

Finally, some nmmerical examples are presented inm Section 5.

For brevity and simplicity, we assume that the function interpolated
E ¥ is monotone increasing throughout the remainder of the paper. The

extension to docroasing functions is trivial.

2. Algorithms.
In this section, we review the Fritsch—Carlsom Algorithm and present

two modifications, the Two—~Sweep and Extended Two—Sweep Algorithms,

The basis of the Fritsch~Carlson Algorithm is e technigue for
determining whether a oubic polymomial p(z) is momotome om the intervsl

lxi.xiﬂl. Coentzal to this technique is the closed region ¥ (see

Figure 2-11) bounded by the azes and the ‘upper half’ of the ellipse D

xz+yz+xy-68-6y+9-0. (2.1)

1 Also shown in Figure 2-1 are the closed regions A,...,E used isn the
expression of the algorithms. A segment of the line x + y = 4 forms the
¥ border betweez the regions A and B and also between the regions D and E.
i The region C is bounded by the lines x =3 and y = 3,
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Fritsch and Carlson [3] show that p(z) is momotome on [‘1"1+1] if and only

1 (p'(x).p* (2, ) ¢ K,." vhere

K= Ma = ((xa,y) : (xy) e M D,
A= lp(xiﬂ) - p(xi)llht. hi kLR X

5. v 1 ' L v LI
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Figure 3-1: The monotomnicity region ) and associated exterior
rogions A,...,E. All regions sre closed.

2 VWe also scale the regions A,...,E by A, and refer to them as .....Bi.
respectively, However, if A, = 0, we extend this convention by taking C
to be the whole first gquadrait; all other regions contract to either points
or limes in the obvioms way,

i i e Bk e o ek e e %
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Thus, starting with a set of function valuss “(’1)) and approximate
derivative valnes {dil. it is easy to determine whether the cubic Hermite
iaterpolant of these valuss is monotome. MNoreover, if the imitial
interpolant is mot momotome, then the oomdition om p’ indicates how the

values (dil should be modified to make it momotone.

Figure 2-2 presents a three step uta-al.;o::ltl.s for finding a
monotone cubic Hermite imterpolant. Only Step 2 is specified completely.
In Step 1, any technique for computing the initial approximate derivative
values {dil is acceptable, slthough the accuracy of the initial wvalues is
one of the prime factoxrs in determining the accuracy of the interpolant.
Three possible implementations of Step 3 are developed in the remainder of

this section.

Step 1: Compute the initial approximate derivative values {dil.
Step 2: Ensure that each d1 is moanegative.

FOR i := 1 STEP 1 UNTIL a DO
‘1 1= m(delz

Step 3: Modify {dll so that each ordered pair (d‘.d“_l) e li

Figere 2-2: Preliminary Algorithm.

3 Although Steps 2 and 3 can be combined easily savimg ome pass through
the data, considering thess two steps separately simplifies the amalysis.

i ol -y : P e — ; LR T
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If Step 3 termimates, ther the algorithm produces a set of
approximats derivative values which, together with the function values
(f(zi)], detezmine s monotone cubic Hermite interpolant of f. The
difficulty in implementing Step 3 is that modifying ome derivative valme ¢l1

affects both of the ordered pairs (4, ,.d.) and (d4,,d,,,). Becanse of the

i+l

shape of M, docreasing the magnitude of d‘ in moving (di’d ) imto !i nay

i+l
force (8, ,.,d,) out of N, ., and vice versa.

For this reason, Fritsch and Carlson base their algorithm on a region

8 properly ocoutained in ) with the following important property:
+ + + +
If(x,y) e §and 0{x {xand 0y Sy, then (x ,y) s 8.

The Fritsch-Carlson Algorithm consists of Steps 1 and 2 of the Preliminmary

Algorithm together with Step 3 as shown in Figure 2-3 .‘

Alternatively, any techmique for projecting the poisnts “i'diﬂ) into
!1 which is guaranteed to terminate could be used in Step 3. One such

method, the Two-Sweep Algorithm, {s shown in Figure 2-4.

On the Forward Sweep, only the second compoment of each ordered pair

iﬂ’ does not affect (dj.tlj_.,1

Consequently, it is easy to see that (‘i"iﬂ) s llu 91 v Bi after the

is altered, so that modifying (di.d ) for j<i.

4 Here, again, we have used the notatios S,i to stand for Q-Ai.
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Step 3: Modify {dil 80 that esch ordered pair (ai.diﬂ) e li'
FOR { := 1 STEP 1 UNTIL =1 DO

IF (d,,d,,.) ¢ §, THEN

+ +
Compute c!1 and ¢!“_1 so that
+

(a) 0 di K4 di’
+
(b) 0 £ d:l+1 £ di+1‘ and

+ +
{¢) “1"14'1) s ﬁi;
+

d = 4“13

+
= d:l' d

i i+l

Figure 2-3: Step 3 of the Fritsch-Carlson Algorithm.

Step 3: Nodify (di} so that each ordered pair (di'di-u) e li
Forward Sweep — modify the second component only.
FOR i := 1 STEP 1 UNTIL =1 DO

IF (di'd ) e (!i THEN

i+l
diﬂ H ”i‘
ELSE IF “1"1‘*1) s Ai v B, THEN
Decrease di+1 to projeot “1"1-*1) onto the boundary of N
Backvard Sweep - modify the first compomeat oaly.
FOR i := o1 STEP -1 UNTIL 1 DO
IF “1"14»1) ¢ D, v E; THEN

Decreass di to project “i"iﬂ) onto the boundary of !i‘

Figure 2-4: Step 3 of the Two—Sweep Algorithm,
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Forward Sweep.

On the Backward Sweep, only the first componment of each ordered pair

is altered, so that wodifying ‘di'di-l-l) does not affect (cl:l.d:,.',1

Moreover, decreasing the magnitude of ‘1 ensures that the neighboring point

) for jri.

(4, ,,4,) romains in M, _, y B, , y K- so that (&, ,,4,) can b2 projected

into xi-l by decreasing the magnitude of 4 on the next pass through the

i-1

loop. Therefore, after the Backward Sweep is completed, (di’d ) e ‘!i and

i+l
the associated cubic Hermite interpolanmt is monmotose.

The major short-coming of the Two-Sweep Algorithm is that it may move
a point “i'diﬂ) much fsrther than mecessary when projecting it imto ).
This problem is most acute in the regions A and E close to the points (0,3)
snd (3,0), respectively, where the boundary of M is tangent to the axes
(see Section 4). Therefore, we nov consider the Extended Two—Sweep

Algorithm described in Figure 2-5.

If the ordered pair of approximate derivative values “1"1 ﬂ) does
not lie in !1' then this algorithm allows the magnitude of cl1 to be
increased on the Forward Sweep and the magnitude of d‘ “a to be increased on
the Backward Sweep. However, the amount by which they can be increased is
constrsined by the requirement that, on the Forward Sweep, the preceding
ordered pair (4, ,.d,) must zemain in M., R, ;¢ E,_; end, on the

Backward Sweep, (4 ) must remain in | PR Becanse of these

141°%142
constraints, it is clear that “1"14-1) s l‘ after the two sweeps of the

extended algorithm have been completed. Conseguently, the associated cubic

Hormite interpolant is monotonms.
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Step 3: Modify {di} so that each ordered pair (di’di+1) e !i' | 5“

Forward Sweep — modify the second component only unless the
ordered pair lies in Ai'

FOR i := 1 STEP 1 UNTIL »-1 DO S |

CASE (diad ) s Ci:

i+l

di+1 = 3A

CASE (¢

13
179340) & By

Decrease di+1 to project (d

| 1+1) onto the boundary of !i'
F 4 CASE (d,.4...) ¢ A;:
Increase di until either
(s) (di'di+1) reaches the boundary of gi. or
: (b) (4, ,.d4,) reaches the boundary of E_,ul;ukE,
3 (if 1> 1);
& IF (d i+1) ¢ !1 THEN
Decrease di+1 to project (d i+1) onto the boundary of !i'

Backward Sweep — modify the first component only unless the 1
i ordered pair lies in Ei'

FOR i := p-1 STEP -1 UNTIL 1 DO
CASE (di'di+1) ) ni:
‘ Decrease d1 to project (di'¢1+1) onto the boundary of !1;
";b CASE (d,,4,,,) ¢ E,:
Increase di+1 until either
(s) (d d,41) Tesches the boundary of B, or
| (b) (4i+1’d1+2) reaches the boundary of !1+1 (if 1 < o-1);
ﬂ IF (4,.4,,,) ¢ K, THRN

Decrease d1 to project (d ‘+1) onto the bdommdary of ]1.

j
. 1
Figure 2-5: Step 3 of the Extended Two-Sweep Algorithm. 1
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3. Third-Order Comvergeace.

In this section, we prove that each of the algorithms presemted irn

Section 2 yields a third—order Lh spproximation to a C3 monotone function,

provided that the initial approximate derivative values are second-order

o

sccurate and, in the case of the Fritsch-Carlson Algorithm, that § is

suitadbly chosen.

| We begin by considering what restrictions on the region § are
necessary for the Fritsch-Carlson Algorithm to be third-order sccurate. To

this end, the following result is useful.

2 } Lemms 3.1: If pl(x) and pz(x) are two polynmomials of degree three or

less that satisfy

E ot Pl(xi) = pz(xi) and ’1‘x1+1) - pz(xiﬂ).

. & then

max { lpl(x) - pz(x)l A EE D (3.1)

2
2 g73 max | |pi(xi) - pi(xi)l. "1'.(‘14-1) - ’5“1-&1” }.

Proof: Evalusting

x-x 2
P (x) = py(x) = (x-x)) [——h-:ﬂ] [pj(z,) - pj(x))]
-z, 2
’ -
) [hi ] [p](x44y) = 3tz )]

+ (x-x“1

at the points

1 . 1,1
y =z 4 I3 7{71&1 amd xy e+ G+ AR,
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yields

(3,) = p(y,) = X {2+ pi(x,) - pix,)) (3.2)
P11y =Py = 6 PR, v AL 2 ALY LR S ALY .
S U W _
3 - 73 Ipilxgay) — Pz )
and
; b

: pl(zi) - ’2(’i) =3 { [5 - m] [p,’_(xl) - pi(xi)] (3.3)
|
- l" 1 ] | ]
: - 15 + A5l Ipjx,,y) - pilx, 01 ),

respectively. If
|pi(xi) - Pi(‘i)l 2 |pi(xi+1) - ’2'(’14'1)"

then, from (3.2),

b
- S 1. A ’ -t
|p1(yi) pz(y‘)l g U3 +m] |p1(xi) ’2(’1”

W=

T S S - ot
-7 "1“1+1’ Pz(’i-u” )
3 B
: 2 Frsi l’i(‘i) - ’2'(‘1”'
which implies (3.1). On the other hand, if
bpj(x) - potx )] < Ipflz, ) = pytx, ],
then (3.1) follows from (3.3). Q.B.D.

h Unless (1,1) s § (the closure of §), the Fritsch~Carlson Algorithm is *

at best first—order acourate. Consider the approzimation to f(x) = x on a
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uniform mesh. In this case,
f'(xi) - f.(ziﬂ) - Ai. =1, for i=1,,..,p1,

' ] Consequently, for esch i, ome of cl1 and d“_1 must be bounded away from 1,

sad the result follows from Lemma 3.1.

S8imilarly, unless T ¢ i, where T is the closed triangle with vertices
| (0,0), (2,0), (0,2), the Fritsch~Carlson Algorithm is at best second-order

sconrste. Assume some point (s,2-3), 0 ( s ¢ 1, on the "spper half’ of the

hypotenuse of T is not in § and consider the spproximation to f(x) = (x-l)2
on the interval [a,b]. For any h B' & z‘g_f')'(b-a). choose a set of kmots

{xil and an integer j such that xj =g+ ;&:‘) eand h, = h = nx[hil. With

3
" this choice of x; and hj' X4 £h,
f £'(x,) 2(x -a) £'0z, 1) 2(x.~a)42B,
) A = 2(x ~a)en, b oM A " 2(x,~a)%n, 22,
“ 3 3 3 3 3 ]

, Moreover, A j 2 hj = k. Therefore, when the Fritsch—Carlson Algorithm
terminates, at least one of the spproximate derivative values {dil must

satisfy
It(x)) - a,1 2 e,

for some constant ¢ > 0, and, by Lemma 5.1, the sssociated cubic Hermite
interpolant is at best second—order accmrate. A similar result holds for

the ’lower half’ of the hypotenuse of I.

. ﬁ On the other hand, if T < 8, then the Fritsch-Carlson Algorithm is
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H third—order accuuto.s Before proving this result, we state the following

useful lemma.

| Leams 3.2: If f & Clla.b] is monotone incressing, then, for asy of

the algorithms described in Section 2,

+ v + - -
.20 and Iff(x) - al i) - a0, =1,....m,

where cl1 and d:. respoctively, are the approximate derivative values before

e =i

and after the execution of Step 2.

Proof: If d, is modified in Step 2, then &, < 0 and dI = 0 (see

Figure 2-2)., Henmce, since f’(xi) 20,

’ - 4' = [} -
£ (z)) dil £ (xi)| < |f'(xi) ail.

On the other hamnd, if tli is not modified, then d'; = d‘ 20, Q.B.D.

Theozom 3.3: Assume that

1. f: Cala.b] is monotone increasing;

2. the initial derivative approximations (di] satisfy

'f'(xi) - dil i chzo i=],...00,

- s The four regions 8,1.....3“ considered in [3) all ocontain the
* triangle J. .




for

3.1c

4. whenever a point (di.d

+
(di

i.e

some comstant o¢;
8; and

i+1) is projected imto 51. the mew point

.d:+1) satisfies
+ +
My 883+ 4440

.s» the point is not moved ‘much farther’ than mecessary.

Then the modified approximate derivative values (d;] produced by the

Fritsch—Carlson Algorithm satisfy

£ (x

RERNEUCRE Tl 15 S e (3.4)

Consequently, the associated monotome onbic Hermite interpolanmt is a thiré-

ozder L
-

spproximation to f.

Proof: From Lemm: 3.2,

d1 2

0 ams Itz - ¢, ¢ ab? (3.5)

at the termimation of Step 2.

Ass

* +
(6, .4,

ume that di is modified in Step 3 when (d:—l"i) is projected to

+

6 +
s 51_1. The values &

& ., and
1’ 4

i-1° 44 msy differ from the

6‘+

oitho"%n

and d._ are approximate derivative values that have beesn modified
oce or twice, respectively.
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initial values di—l and cl1 satisfying (3.5), but
® + +
0« di-l £ di-l £ di-l and 0« ‘i £ di'

I £0(x,) d';. then

0<d]-£x) L4 - £z b2,
Therefore, assume that f'(:i) 2 d:. Note that
(s) 2
28, 4 = £'(x,_4 )*f'(x)--f (11)11

for some Vi1 ® [xi-l’xi]’ From Assumption 4,

. . &
Wiq $454 + 4y,
s0 that
+ b z (3) 2
Therefore,
+
0 < t'(‘i) - di
sap -z ) + 3¢ R
(3) 2
$di_1-l’(x )+-f (y )11
< le s -}lf"’l,u
by Assumption 2. ]
1 : It dI is decreased to d; to project (d';.d“l) into l‘ oa the next !
‘ pass through the loop, then a similar argument shows that inequality (3.4) 1
remains wvalid. Q.E.D.
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Essentially the same azrgument shows that the Two—Sweep Algorithm is
third-order sccurate. However, the Exteaded Two~Sweep Algoriths may
increase some approximate derivative valwes. Therefore, we adopt &

different approach based mpos the followiag 1-;.1

lemms 3.4: Asssme that

1. f & Csh.b] is monotuad imcreasiang; smd,

2. for some a > 0, (f'(x,_,).f'(x,)) 4 ﬂ-l = I‘.‘i-l’ vhere I* is the
closed triangle with vertices (0,0), (2+a,0), (0,2+a).
Then

(3)g .2
b4 ¢ Et'f I Y

and

. \ 1, 17,080y 42
£, )+ 10z < [3 o 2 ePaE .

Proof: If (£'(x,_;).2'(x,)) 4 Ij . then

(24a)a, . < £'(x, ,) + £(x,).

7 In passing, mote that this lemma can also be used to prove a differeat
version of Theorem 3.3: if Assumptions 3 and 4 are replaced by

5. :‘: § for some o > O,

then the Fritsch-Carlson Algorithm is still third-order acourate,




However,

' - 1,03 2
28, ="z, )+ £0(x) - SOy, N, 1 (3.6)

for some y, , & [x, ,.x,], s0 that

(3) 2 (8)y ,2
2 ot P g, < a1y

4y ej-1"

Finally, using (3.6),
1, 1,080y 42
0z, )+ £0(x) < [+ A0

e §=-1"

Q.8.D.
Theozrem 3.5: Asgne that

1. f s Cslc,b] is monotone increasing; and
2. the initial derivative approximations [dil satisfy
ler(z) - ol b, se1...iim

for some comstant c.
Then the modified approzimate derivative values [d:) produced by either the

Two-Sweep or the Extended Two-Sweep Algorithm satisfy
[ ]

PUPRIE W IREITIONE | 7] [ ey (3.7
Consequently, the sssocisted monotome onbic Hermite interpolamt is a third-
order L approzimatioa to f.

Proof: By Leams 3.2, the approximate derivative valmes satisfy

4,20 ama l£'(z) -4, g on?




o

piegliincsmanlii el —_—— g N S D AN

-17 -

at the completion of Step 2 of either algorithm., Therefore, they also
satisfy (3.7). Below, wes shov that, if all the approximate derivative
values satisfy (3.7) vhen one is modified in Step 3, then the modified

valse also satisfies (3.7). Thus, the theorem follows by imduction,

In the Extended Two~Sweep Algorithm, d‘ is modified in Step 3 oaly if

1. (di-l"i) is projected downwards in the Forward Sweep,

2. (‘i" ) is projected to the right in the Forward Sweep,

i+l
3. (di"iﬂ) is projected to the left in the Backward Sweep, or

4, “i-l"i) is projected upwards in the Backward Sweep.

For the Two—-Sweep Algorithm, only Cases 1 and 3 are applicable. Therefore,
proving (3.7) for the Extended Two—Sweep Algorithm also shows that this

inequality is valid for the Two-Sweep Algorithm,

Consider Case 1 first: “1—1"1) is projected downwards in the

Forward Sweep. If £ '(xi) £ d:. then
19.(3
0 ¢ a} - £z <4, - £(x) < maste, S 02,

since dI & ‘1' Therefore, assume that f'(xi) 2 d;. If

(£9(x,_),2(x,)) ¢ T;_;, then
£'(x,) € 3A ¢
x) 3, L4,

s contradiction. Thus, (f'(x, ,).f'(x,)) 4 ﬂ-l‘ vhenos

1p.(3)y .2
£z, )+ £°(x) <OV,
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by Lemma 3.4. 8ince f'(xi) 2 dI 2 0 and both £'(x, .) and f'(’i) are

i-1
aonnegative,

0< £9x) - &) < £7(x,) < 29z, 1) + £(x) ¢ FeBN0 2,

Next consider Case 2: “i'diﬂ) is projected to the right is the
Forward Sweep. If d: £ f’(xi). then

. + . 1p.(3) 2
0L f(x) ~a g £'(x) ~a, < maxle, Fh7I 0%,

since ¢l1 (4 d:. Therefore, assume that d: 2 f'(xi). If
’ /2
(f’(xi).f (xiﬂ.” $ I} » then

1g9.(8)y .2
A, (S0
+« ,1 *
by lemma 3.4. Bunt di £ -z-Ai sinee (di’dﬁ-z) s Ai’ so that
+ + 1 15,.(3)yg .2
0<a, - 2°(x) < a, <58, SO .
On the other hand, if (£'(x.),f'(x...)) ¢ ﬂ’z then
» 1 » 1+1 »
£(x,) + £'(x,..) $3A, {4, -2a
i iv1) 2 2% 5> % T 4

since (d‘.d’u) e ‘i implies that SAi £ ‘i+1' Re-arranging terms,

-I-Ai +20x) S @

3 - f'(x

),

i+l i+l

whence

+
6+ ) 8, - '),

sinoe d'; £ %‘1’ Thezefore,

e h e e ———
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0 a: - £'(x) & a'; +ex) S d -2z,
< maxle, 330 02,

Cases 3 and 4 are handled in a similar manner, Q.E.D.

4. Fourth-Order Comvezgeaos.

In this section, we demonstrate that neither the Fritsch-Carlson
Algorithm nor the Two—Sweep Algorithm is s fourtb-order method, where, in
the case of the latter algorithm, we assume that the initisl approximate
derivative values are less than fourth-order sccurate. On the other hand,
the Extended Two—Sweep Algorithm is a fourth—order metbod if the imitial

approximate derivative values are third—order accurate.

To see that the Fritsch~Carlson Algorithm is not a fourth—order
method, consider the function f(x) = (x—1)3 op the intervel [0,3]. For any

positive integer m, let the knots de
- - - e
z, 31k, i=0,1,...,39%¥2, where 1 2 °
A simple computation shows thst
1.2 1.2

4.2 - 1
f'(x.)-§ . f'(x-ﬂ)-gh. and A 311.

whenoce

’
4 (x)'f’(x !I) . )
A A ’
a =

is on the bomadary of §. On the other hand, any region § used inm Step 3 of

L
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the Fritsch~Carlson Algorithms must be contsimed in the region 5_1. the
square with vertices (0,0) (0,3), (3,3), (3,0), so that the modified

L ]
derivative approximation d. must satisfy d: £ 3A.. Thus,

£(x ) -d ) £(x) - 3a_ = 312
n = n a 3 °

and, from Lemms 3.1, the Fritsch—-Carlson Algorithm yields at best a third-~

order spproximation to f.

To see that the Two-Sweep Algorithm is not s fourtb—order method if
the initial approximate derivative values are less than fourth—-order
sccurate, once again consider the function f(x) = (x-1)3 on the interval

[0,31. For 2 { p { 4, choose the knots {xi] such that, for some j,

p/2

xj = 1} and hj =hw m{hil. Hence,

£1(x) = 307, £(xy0) = 307 - 212 4Py,

aand

o, = w2 - snl*P/2 , gpP,

It is easy to check that (£/(x . ),f'(x,..)) is on the boundary between !j

J in
and Aj and that (f.(xi)".(xlﬂ.” s S1.Ai for i ¢ j. Let dj = 0 and

‘i - f'(xi) for i # j. Then 4, is »a pth-order approximation to f'(xj) and

3

all other tl1 are oexsct. In addition, simce ‘j < f'(xj). it follows that

(dj.dj'u) s Aj\lj and (di’diﬂ) . 31"1 for 1 ¥ j. Consequently, the only

spprozimate derivative value that is modified by the Two~Sweep Algorithm is

&
‘j-u and it is set to ‘jﬂ = SA, on the Forward Sweep. Hence,

-at . 1+p/2 _ . p
£'(x,,0) - 8y, = 32 6r’,

) 28
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and, by Lemma 3.1, the Two-Sweep Algorithm yields at best an order 2¢§
approximation to f. In é::t!cula:. if the Two~Sweep Algorithm is msed to
modify the derivative values of a onbic splime interpolant, then the
resulting monotone C1 piecewise cubic interpolant may be of order 3%.
rather than 4, since the initial approximate derivative values are oanly

third—order accurate.

}l Howevezr, for both the Fritsch~Carlson snd Two~Sweep Algorithms, this
‘ degradation in the order of the approximation arises only under very
special circumstances. If the region § associsted with the Fritsch-Carlson
Algorithm contains s triangle IF for some a ) 0, then, using an argument

4 similar to the one employed in the proof of Theorem 4.1, one can show that
the degradation in the order of either of these two algorithms occurs oaly
in intervals immediately adjacent to an interval comtaining & root of £’ of
exact multiplicity two. MNoreover, for the Two—-Sweep Algorithm, the

degradation occurs only if, as h =) 0, there are infinitely many grids each

containing an interval [xi.x ] and a point t in that isterval st which f'

i+1
bas a root of exact multiplicity two and the distance between t and ome of
the endpoints of the interval is less than clhi but greater than °2hi for

all positive coastants € and ey

Another poimt sbout all three a2lgorithms should be emphasiszed:
vhenoever h is sufficiently small, most of the initial derivative

approzimations are not changed by any of the slgorithms. Thus, if the

l initial derivative approzimations are third—order accurate, thea the

interpolant produced by any of the algorithms is locally a fomrth—order
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approximation on most iatervals. MNoreover, if the initial interpolast is a
ocubic splime, then this additiomal smoothness is lost only st the knots

where the derivative values are modified.

We end this section with a comvergence result for the Exteanded Two~

Sweep Algorithm.

Theorem 4.1: Assume that

1. f ¢ C‘[t.b] is monotone increasing;

2, vhenover £'(x) = £''(x) = f(s)(x) = f(“(x) = 0, there is a 6 > 0
such that, if y ¢ [x,x+8) n [e,b], then either

a. £'(y) = 0 or
b. there exist constants ll. B, snd r such that

-I(y-z)’ £y < -2(y-x)’.

woxoﬁgzgﬁm:}_sa

and, if y ¢ (x-8,x] qn [a,b], then either

a. £'(y) = 0 or
b. there exist constants Ry, B, and s such that

la(x-y)' L 1'(y) & l4(x-y)'

Y
'hotogs.—:'gi‘%nds)_!; and

3. the initial derivative approximations “1) satisfy
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berex) - a1 g a®,  i=1,....n.

Then, for h sufficiently small, the modified approximate derivative values

.
[61} produced by the Extended Two~Sweep Algorithm satisfy

lf.(xi) - d;l $ :hs' i'l.....ﬂ, (4.1)
where

T = maxtele W, 244 4 12, (4.2)

' 32

Consequently, the associated monotome cubic Hermite interpolant is a

fourth-order L_ approximation to f.a

Proof: To prove this result, we combine a com>sctness srgument witk
induction. The essence of the proof is outlimned below; the details, which

are straightforward but tedious, are in the Appemdix.

For each t ¢ [a,b], we choose a Bt > 0 that determines an open
interval It = (t-&t.t+6t), where bt depends upon f in a meighborhood of
t. Since {It] forms an open covering of the compact imterval [a,b], there

exists a finite subcovering of [a,b]., MNoreover, for b = -nx{hi)

8 The proof of this result requires Assumption 2, slthough we suspect
that the theorem remains valid for any momotone {a,b] funotion. It is
also worth moting that Assumption 2 holds for any piecewise amalytic
funetion.
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sufficiently small, each interval [x ) e It’ one of the intervals of

1-1°%341
the subcovering. The proof relies heavily upon exploiting the local

properties of £ on each interval of the finite subcovering.

The actual induction hypothesis nsed is slightly stronger thanm (4.1):

1. 1f [z Te I, £24t) = £27(e) = 0, £3)(¢) # 0, ane

1-1°%141
te(x, ,.,x;], then

ey - 59,(4) 3
lerex) - a0 < [30£'90 + 650’

2. If [x le I, £9(8) = £29(2) = 0, £3(¢) ¢ 0, ana

i-1°%341

te [xi.x ), thean

141
lercz) - o 1  [Soe90 + 20,
3. Otherwise,
|f'(xi) - ‘i' £ max{e, Blf(‘)l.lhs.
By Lemmsa 3.2,
4,20 e lrr(z) -l

at the termination of Step 2. Coaseguently, the induction hypothesis is
satisfied at the beginning of Step 3. In the Appendix, we show that, if
sll the approximate derivative values satisfy the hypothesis when one is

modified in Step 3, then the modified value also satisfies the hypothesis.

Thus, the theorem follows by induction. QLE.D.
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5. Numoerical Results.
In this section, we compare the piecewise cnbic interpolaants produced
by CUBSPL [1), the Fritsch-Carlson Algorithm, and the Extended Two—Sweep

Algorithm for the two sets of monotone data given in Section 5 of [3].

In the case of CUBSPL, we used the ’mot~a—knot' boundary conditions
to complete the specification of the cubic splime interpolant, Since
CUBSPL is based upon a fourth—order linear algorithm, it does not, in

general, produce a monotone spproximation to a set of momotome data.

We implemented the Fritsch-Carlson Algorithm described in [3] and,
following their suggestion, we took the region § required in Step 3 to be
52, the intersection of the disk of radius three centered at the origin
with the first quadrant. The results in Sections 3 and 4 sbove show that

this method is third-order, but not fourth—order, accurste.

We used the derivative of the cubic splime interpolant produced by
CUBSPL for the initial derivative approzix-iions reguired in Step 1 of the
Extended Two~Sweep Algorithm, Since these approximate derivative values
sre third~order accurate, the momotoans interpolamt produced by the Extended

Two-Sweep Algorithm is fourth-order accurate.

Figure 5-1 shows the interpolants produced by CUBSPL and the Extended
Two~Sweep Algorithm for the first data set (AKIMA 3) in [3]. Figure §5-2
shows the interpolants produced by the Fritsch-Carlsom Algorithm and the

Extended Two-Sweep Algorithm for the same dats set, Figures 5-3 and 5-4

shov the interpolants generated by the same two pairs of methods, but for
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the second data set (RPN 14) in [3].

The interpolant produced by CUBSPL is clearly mot momotone for either
data set and does not yield 2 'visvally pleasing’ approximation in either

For the first data set, the interpolants produced by the Fritsch-
Carlson and Extended Two—Sweep Algorithms differ significantly onm the
interval [11,15), Because the Extended Two-Sweep Algorithm projects
spproximate derivative values onto the boundary of M, it produces an
interpolant with a zero slope in this interval. This is mot the case for
the Fritsck-Carlson Algorithm, simce it projects approximste derivative
values into the interior of M. Ve leave the subjective gquestion of which

spproximation is 'visually more pleasing' to the reader.

For the second data set, the interpolants produced by the Fritsch-
Carlson and Extended Two~Sweep Algorithms are virtually indistinguishable
st the resolution of these plots: momotonicity imposes a severe comstraiat

in this example.
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‘ ' Figure 5~1: A plot of the iaterpolants prodeced by CUBSPL (dotted curve)
sad the Extended Two-Sweep Algorithm (solid ocurve) for the data set 5
AKIMA 8, i
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Appondix
L, Preof of Theorem 4.1%

In this appendix, we complete the proof of Theorem 4.1. To begian, we

state and prove two useful lemmas.

Lemms 5:3: If £ & C*la,b) and £9(t) = £27(t) = 0 but £37(¢) # 0 for

some t ¢ [xi,x‘*Il. then

2
b (xp) - =2 a1 ¢ SO P (5.1)
1-3y+3y
and
2
g2 (x,, ) - 30—y ) ¢ AP antd, (5.2)
1-3y+3y

(5.3)

is the elliptical boundary of M.
Proof: Inequalities (5.1) and (5.2) follow from the Taylor series
expansions
- 1(3) 2,2 _1.(4) 3.3
l'(xi) 2: (t)y hi ‘f (yi)y hi'
- 1,(8) 2,2 ,1,4) 8.3
t'(x£+1) 2! (t)(1—y) h’ + 6’ (’ﬁ)(1-7) hi’ and
A

1,.(3) 3 .8.2_ 1..4 4_,(4) 4,.3
1= () [(3=y) 4y ]h1 + 24[f (y,)(1-1) 4 (71)7 lhi.

for some ¥, Y5, Ygr ¥, 8 [x,,3,,,]. The validity of (5.3) is established

el il
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easily from (2.1). Q.EB.D

Lemma 5.2: Assume that

1, f ¢ C‘h.b] is monotone increasinsg;

2. £'(t) = £°7(t) = 0 but i‘”(t) # 0 for some t ¢ [x,,2, . .);
 Sat €5 G4

3. ‘di’diﬂ) e Ai: and

4. the initial derivative approximations satisfy

3
£(x) ¢4, and If'(xm) ~di gl Lo

for some constant ¢.

+ +
Then, for the unique 4!1"1 sach that (di.d‘ﬂ) ) !i" Ai'

l£9(x ) = @}, 1 < maxte, sHEOU 28, (5.4)

A similsr result holds for “i"i#—l) s ll'

Proof: Throughout this proof, we use inequalities (5.1) and (5.2) of

Lomma 5.1 withont explicit reference.

&
Consider two cases depending upon whether diﬂ. > t'(x‘ ﬂ).

+
Case 1: If 4“1 > f’(xiﬂ). then

+ 3
0 < d’ﬂ - f'(xiﬂ) £ ‘1+1 - f’(x“l) £ ok,

+*
sisnce d‘ﬂ [ d“l.

. Y P A
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Case 2: If d;ﬂ £ f’(xiﬂ)’ then consider tvo suboases depending

spoa whether

2 4 i (5.5)

Case 2.1: If (5.5) is valid, them

2
MWl y ¢ d},,. (5.6)
1-37+3y

since the segment of the onrve (5.3) that forms the boundary between !i and
Ai is an increasing function of y in both the x and y co~ordinates.

Consequently,

’ ) - 3.(1:1)._ (4)
0 £ (x,, ) - dp, & f(x,,) ¥ [aaid B

1-3y+372 Ay £
Case 2.2: If (5.5) is not walid, then consider two subcases

depending mpon whether vy > %

Case 2.2.1: If y) % then

This bound together with the observationm that d £ -A (since

“1"1+1’ s ‘1) shows thst

2
2, ¢ —3-’-—2 Ay -8 & = a - £z < HEW LM,
1-3y+3y 1-3y43y
Is addition,

2
38, € 6h,, S 70z, ) S 4, + sV N,

wheaoe,




g e EIARNRES Sl Rl LI o - o - ailV. - o il i . AL s A e g i T g » i s "

0« £z, ) - b, < AV,

i+1

Case 2.2.2: Altermatively, if 0 ( v £ -;‘. then there exists a mmnique

4 -t ¢ [0,y] such that

‘di —a? = A, (5.7
1-3z43¢2

mor ag

since, by assumptios,

and the right side of this imequality is a strictly increasing function of

vyfor 0y ¢ %. Moreover, since (di.d:ﬂ) e !i n ‘1'

. m_nz

f: ! 4 = A
| 1#1 4 3p432

271

f ,r by (5.3). Thezefore,

0< £z, ) = g, (5.8)

2
y - aam? ,,m:n__ _wa=p?

= f'(x
1374372 1 1-8y4342 44 1-3z482% 1

i+l

< fA12° + 90,

since, for 0 { ¢ £ ¥ $-31'. i

1-314'37 1-3¢+3§

To bound D(rt)A‘. note that, for 0 L ¢ S 7 S% and f'(xi) -4, £0,
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0 < 3v(y - B4, < 3G - g,

2 2

- L 2 | i

£ 2 4 2 44
1-3y+3y 1-33+3¢

2
- —-31——3Ai - f'(x) + 1) - @
1-3y+3y

i

whence
0 < 90y - A, & sHe Y43,
Combining this with (5.8), we get that

' - at (4)g .3
0 £'(x, ) -4, St Y.
Q.E.D.

Proof of Theorem 4.1: As stated in Section 4, we combinme a

compactness argument with induction to proof this result.

For each point t ¢ [a.b], we choose a Bt > 0 that determines an open
interval It - (t-&t.tﬂt). Since [It] forms an open covering of the
compsct imterval [a,b], there exists a finite subcovering of [a,b].
Moreover, for h = m{hi} sufficiently small, each interval
[xi-l"i-fl] clt. one of the imtervals of the suboovering. The proof
relies heavily wpon exploiting the local properties of £ on each interval

of the finite suboovering.

In choosing ‘t' we consider four cases.
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1. If £'(t) # 0, then choose 6, > 0 such that
0 < £'(x) < 3£'(y)
for all x, y & It N [a,b].
2. If £'(t) = O but £''(t) # O, then choose St > 0 such that
0 < £'(x) < 1.5 (y)
for all z, y ¢ It-n [a,b].
3. If £'(t) = £°'(t) = 0 but f(S)(t) ¢ 0, then choose St > 0 such that
0 < £ ¢ 1.1y
for all x, y ¢ It N [a,d].

4, If £'(t) = £''(¢t) = f(S)(t) = 0, then choose bt such that, for all
ye [t.t+6t) 0 [s,b], either

s. £'(y) = 0 or
b. for some constants -1. n, and r,
3 R 4
-l(rt) £ £'(y) $-2(y-t) ,

10,2 1
where 1 £ a £ 10 and r 2 3,
and, for all y ¢ (t-St.t] N [a,b], either

a. £'(y) = 0 or

b. for some constants 13. LU sn§ 8,

ls(t-y)' £ £'(y) & n4(t-y)'.
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where %f £ ke i and s ) 3,

10

off |o¥

.It is possidble to choose bt to satisfy Cases 1-3 becaunse the first three

derivatives of f are contimuous. If f“’(t) # 0, then Case 4 follows from
the continuity of f“’. Otherwise, it follows directly from Assumption 2

of Theorem 4.1.

To prove that the induction hypothesis (stated in the abbreviated
proof of Theorem 4.1 in Section 4) remains valid when an approximate
derivative value d1 is modified in Step 3 of the Extended Two-Sweep
Algorithm, we consider s number of cases depending mpon the properties of £
st t, where [‘i—l’xi+1
the last case in the induction hypothesis first.

l e It is the interval mnder comsideration. VWe prove

Case 1: Assume that (x ] ¢ It and £'(t) ¢ O,

i-1°%in1

Case 1.1: Assome that (4, ,.4,) s &, , B, ; v, and d, is
decreased to dI on the Forward Sweep. Hence, ‘1 2 d: 2 3‘1—1' Since
8,1 = £'(y) for some y ¢ [x,_,,x;], it follows from the choice of I  that
£'(x,) 3, ,. Therefore,

0cat - 1z (o, - £(x,) ¢ o®
i i i i *
<+
Case 1.2: Assome that (‘1’d£+1) s ‘i and di is increased to di on

the Forward Sweep. If d; (4 f'(:‘). thexn

0 e (x) - a) L 2(x) - 4, o’

On the other hand, if d: 2 f'(:l)' then
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0Cd -z g a.

To bound d+. note that f.(xiﬂ) < 3Ai by the choice of It' Therefore,

3
’Ai $ "+1 i 3A1 + ¢h" .

This inequality together with the observation that the curve x = (rS)z is

e PN e v o

+ 3.2 +
contained in M for 3 { y £ 4, shows that di £ (eb™)“, sinoe (di'diﬂ) s Ai'

Rence, for b sufficiently small,

R o

. - at 3
£ (z,) dil £ oh”.

Case 1.3: Since £'(x,_,) £ 34, , and £'(x,) < 34, s similer

argument shows that ‘

b 3
fer(x) - a1 < ob
after the Backward Sweep.

Case 2: Assume that hi-l"iﬂl c llt and £°(t) = 0, but £'°(t) # O.
(In this case, t must be ome of the endpoints of the imterval [a,b], since

otherwise f would mot be momotome.) As in Case 1, the choice of It ensures

that

f.(xi-l) £30 4. !'(xi) £33, ,.

© — -

f’(xi) (4 SA’. f‘(xiﬂ) £ SA,‘.

Therefore, s similar argument shows that

lee(x,) - a:l < o




P,

at the termimation of Step 3 in this cass as well.

JcI, £°(t) = £''(t) = 0,

Case 3: Assome that [z, . .x, ., t

b (3)
£277(t) #Ouulxiﬂs_t.

Case 3.1: Assume that (8, ,,4,) ¢ A, , VR, _, VE , and d is
decreased to d:. From the choice of It' it follows that £'°(zx) ¢ 0 for

s It. and x { t. Therefore, f’(xi) £ A!—l' Hence, as in Case 1.1,
0¢at - e(x) ¢4, - £°(x) (b’
i i i i *

Case 3.2: Assume that “1" ) s &i and 4, is increased to d:.

i+l i
Again, since £°'(x) C 0 for x s I[t and x ( t, it follows that

£f'(x,..) & Ai' Consequently, the argument used in Case 1.2 shows that, for

i+l
b sufficiently small,

+) 3
|£'(xi) - dil < ¢k
in this case as well,

Case 3.3: Assume that “1"14'1

) s ni v Bi and 4, is decreased to d:.

If £'(x,) £ &), then
0gat - g(x,) S a, - 22(z,) § oA}
i i i i *
Therefore, assume that f'(xi) b d:. and let v = (t-x‘ﬂ)lhi. Since

A1 = £7(z) for some z & [x‘.x“1

it follows from the Taylor series expansions of "(’i) and £'(z) adbout ¢t

] and £'(x) £ 1.12'(y) for all x, y ¢ It' ;

‘that

tza, = P D00 -0? C1ama?ed,
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Consequently, if v 2 1/{(w-1), where .2 - i-lq' then t'(xi) £ 3A1 £ dI. s

contradiction. Therefore, 0 { v £ 1/(w-1). A simple calounlation, similar

't0 the one used in the proof of Lemma 5.1, shows that

3a, S d; 7z S 38, + b0,
vhence

0 < £r(x) - &) < le!VD,®
in sccordance with the iaduction hypothesis.

is increased to d+.

Case 3.4: Assume that (4, _408,) s E,_, snd d, i

It g < £'(z,), then
0L £(x) - d) < £°(x)) - 8, < maxte, RN,

On the other hand, if d; 2 f'(xi). then an argument similar to the ome used

in Case 3.3 together with the induction hypothosis shows that
(4)g .3 =~ 3
4,1 S 34, + 6l DD + @7,

vhere ¢ is given in (4.2). Therefore, since y = (x-3)z is contained in )
for 3 {x S 4 and (4,_,,6)) ¢ E_,, it follows that

+ + 4 ~2.6
0<d) - r(x) < a} < (6l P+ RS,
which, for h sufficiently small, satisfies the indunctiom hypothesis.

Case 4: Assume that [z, ,,x, . ]c X, £°(2) = £°°(¢) =0,

t“) () #0andt ¢ X, 1+ An argement siailar to the ome used.in Case 8
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shows that the induction hypothesis holds in this case as well,

Case 5: Assume that [x Je I, £9(8) = £2°(2) = 3y =0

1-1°*i41
* and X4 St. In this oase, either £'(y) = 0 for all y { t ia 1[t or £'(y)
satisfies the bound in Comdition 4b on I.. If £'(y) = 0, then both A,_,
aad A, are zero. Hemce, if 4, # 0, then (8, 704;) ¢ C,_, and 4, is set to
zero on the Forward Sweep of the Extended Two—Sweep Algorithm.
Furthermore, since tli is not modified again, ‘1 - f'(xi) = 0 st the
termination of the Step 3. Therefore, assume that £’'(y) satisfies the

bound in Condition 4d on It throughout the remainder of this case.

Case 5.1: Assume that (di-l’d:l) e 4 4u B _ vk ;emdd is
decreased to d:. Then, simce A, , = £'(y) for some y ¢ [x,_,.x,1. it

follows from Conditiom 4b on It that
t"(xi)/A“_1 £ -4(t-xi)'lu3(t—y)' £ 1.1,

<+
Therefore, sinoce ‘:l 2 d1 2 3‘1-1'

0¢ d: - f'(x,) (a4 - £(x) on’.

Case 5.2: Assume that (‘1od ds Ai and tli is increased to dI. An

i+l

srgument similar to the one above shows that £'(x, _ _.) ¢ 1.ui.

i+l
Consequently, as in Case 1.2,

I£7(x) - a3l ¢ on®

. for h sufficiently small,

Case 5.3: Assumo that “!"1-01) s D.*U li anéd d‘ is decreased to dI.

8

et 3 e e S
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Bence, if £7(x)) < dI. then
0<dl - 2(x) Ca, - £(x,) § ob®
i i i i .
Therefore, assume that f’(xi) > d:. whence
0 £'(x,) -a S £(x,).
i i 1

To bound f'(’i)' lot v = (t-‘1+1)/hi‘ Then, since Ai = £'(2) for some

ze [’1”1+1]’
£'(x,)/a, & -4(xi-t)‘lls(z-t)' < 1.3(y+1)%/4*

by Condition 4b. Consequently, if ¥ ) 1/(w-1), where «® = %f. then

f’(xi) < SAi £ d:. a contradiction. Therefore, 0 { vy { 1/(e—~1), Hence, if
s > 3, then f'(xi) = o(hs). and the induction hypothesis holds for b
sufficiently small. On the other hand, if s = 3, then expanding f'(xi) as

a Taylor series about t shows that
£z = V@08 V18,
as required.

+
Case 5.4: Assume that (‘i-I’di) ¢ B, , and 4, is inmcreased to 4.

Thes, if 4]  £'(x,),
0 < £°(x,) - &) < £9(x) - 8, < maxlo, she' 4D 38,

On the other hand, if d; 2 f'(xi). let ¢ = (t-’i)/hl-l' Then, ap argument

‘similar to the ome above together with the imduction hypothesis shows that

~3
4,3 $8A,_, + O
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for v ) 1/(w-1), where &® = %f Hence, we again have thst

0< 4] - £'(x) L4 ¢ (@2

Conversely, if 0 ( vy  1/(w~1), then, for s > 3,

by = () Smy(t-0)® Cm (re)®n® = 0(2h),

while, for s = 3,

L b =20 = V0 P,

In either case,

ROV I RET WS VR Tl '

for b sufficiently small.

Case 6: Assumo that [x le It’ £'(t) = £ (¢t) = f(”(t) =0

1-1°%141
A similar argumest to the ome used in Case 5 shows that the

and t {x, ..

induction hypothesis holds ia this case as well,

Case 7: Assume that [x Je It' £ (t) = £°'°(¢t) = t(”(t) =0

1-1'*141

and t & (x ). The proof of the iadsction hypothesis follows easily

1-1°%141
from the observation thet f'(x,), A,_; aad A, are each bounded by

Tandd TS

This completes the proof of the third case of the iaduction

hypothesis., We mow oconsider the first two cases.

leI, £°(t) = £7(e) = 0.

' Case 8: Assume that [z, ..x .

'fl
#
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f‘”(t) $#0andt s (‘i-l"tl’ First sote that, for h sufficieantly small,
[‘1-2"1] c It' Hence, an argument similar to the ome preseated ia

- Case 3.1 shows that f'(x,_,) A, ,, from which it follows that, if

“1—2"1—1) s ‘1—2 v ni-z v 91-2' then

+ 3
0<dy - 2(x,_ ) Cd,_ =~ t(x, ) Cob

Consequently, 4 satisfies (3.5) st the start of the Forward Sweep for

, i-1
4

1 d:l'

Case 8.1.1: Assume that (4, ,.4,) s 4,_,. Note that d, is decreased

to dI oaly if ‘:l-l has been increased to d:-l and either

+
1. “i-—z’di-l) is on the boundary of li-z v 21-2 v ai-Z’ or

+
2, (di-l’di) is on the boundary between Ai-l sand ni—l‘

In the first case, d;_1 2 Ai—:' But, as previously meationed,

£'(x,_4) A, _,, vhence £z, ) & ‘;-1‘ Therefore, by Lemma 5.2,

+ (4) 3
'l'(x‘) - d‘l £ maxic, T l.lh .

+
On the other hand, if (4, ,.,d,) is on the boundary between 4, , and B .
then the following case applies after motiag that (d‘;._1 "1) is closer to

the bomandary of li than “i—l"i) was.

Case 8.1.2: Assume that (4, ,.,4,) s B, _, v C_, and 4, is decressed
%o dI. A simple calonlation shows that the vertical distamce from
' : (a4, 4+8,) to the boundary of K,_, u R,_, is less thas or equal to 2.75

times the minimes distance from (4, ,.d,) to the bomndary of ), ,. From

inequalities (5.1), (5.2) and the error bdounds on ‘1-1 and ‘1’. it follows
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that the distance from (d, ,,d,) to the boundary of N, , is less thas or

equal to
(4) 3
(20 + sHI 08,
Consequently,
' - at Sg.(4) 3
I2(x) ~ &)1 < (650 + Zhe 0O,

Case 8.2: Assume that “1" s A‘ and that ¢l1 is increased to d;.

i+l
If dI £ f'(xi). then we again have that

0 < °(x) - &} < £z - 4, & (650 + SNt
On the other hand, if &; ) £'(x,), then
+ . +
0 <4} - £'(z)) < &),

Because t ¢ (:1-1”1]' an argument similar to the one presested in Case 3.2

shows that

3 (4)y .3 3
Qg STz ) +eb” (38, + 60 TN ¢+ ob

&} < ehe'Pu_ + 0%,
which completes the analysis of this case.

Case 8.3: Assume that (d‘.d‘ﬂ) s R v B end that 4, s decreased
+
to dI. Therefore, d‘ 2 ‘1 2 SA‘. Bowever, since t ¢ (x‘_l.x‘].

f'(x‘) LA‘. Henoce,
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0L 6~ 1(x) <8y - £°0x) (650 + SN0, 7

Case 8.4: Assume that “i—l"l) ¢ E;_, and that 8, is imcressed to

'a';. It aI < 2'(x), then

0<2Mx,) - ) 1) - ¢, < (6.5c + e )03,

Therefore, assume that d: 2 f'(x’.). In sddition, mote that, if
(4, .,4,) ¢ » then we could 0t have had (4, .,d,) ¢ on the
i-1°74 -1 i-1°"71 -1

Forward Sweep. Therefore, the bound
'di—l - f'(xl_1)| £ on®

estadblished at the beginning of Case 8 still holds. Mozeover, simce the

slope of the curve that forms the boundary between M and E is less than or

equal to ome,
0< a5~ 9(x) (e + zHEWP 3, 1

Case 9: Assume that [zi-l"iﬂ] €L, 2't) = 2''(¢) = 0,

f"’(t) #0andt s [xi.x ).

i+l

. v
Case 9.1: Assume that “1—1"1) s A, VR, Ciq 808 4, is
decreased to d;.
the choice of It’ Henoe,

+
Thexefore, cll 2 cli 2 “1-1' However, f'(x‘) £ A!—l by

0gd}- £(z) <6 - £7(x) ¢ ond.

Case 9.2: Assume that “1"14»1’ s 4; and 4, is inocreased to dI. It

a'; < 2°(x,), then

0<£(x) - a} ¢ £(2,) - 4, < .
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Therefore, assume that dI 2 f‘(xi). Note that the inverse of the slope of

the curve that forms the boundary between ) and A is less than .o: equal to

-one, Therefore, as in Case 8.4,

0 <4} - £z < (e + zHEWI S,

Case 9.3: Assume that “1"14-1) e 9-1 v gi. Since a 2 3A1. 4, could

i
not have been modified in Case 9.2. Henoce, tl1 msust still satisfy (3.5).

Consider the following two subcases.

Case 9.3.1: Assume that “i'd ) s li. Note that d, is decreased

i+l i

+ +
to cl1 only if 11“_1 was increased to cl”1 and either

+
1. “1-01"1-&2) is on the boumndary of l‘ﬂ. or

2. “1":-&1) is on the boundary bstween ni and Ei'

+ .
In the first case, dlﬂ. 2 A!*l‘ In addition, f'(x,..) £ A!ﬂ by the choice

i+l
+

) 14“1 and

of It' Therefore, f'(xiu

8 - a* (4)g .3
I£0(z)) - &1 & max{e, Rl 000

by Lesms 5.2. On the other hand, if (di.d';ﬂ) is on the boundary between

ni sad z‘. then the following case applies after moting that “1";4'1) is

closer to the boundary of li thas (d‘.diﬂ) was.

Case 9.3.2: Assume that “1" ) s p‘ and that cl1 is decreased to

i+1
+

8,. As in Case 8.1.2, note that the horizontal distanmce from “1"1#—1) to

i

_the bowndary of l‘ is less than or egual to 2.75 times the minimwm distance

from (4,,4, .) to the boundary of H,. Moreover, imequalities (5.1). (5.2)

and the induction hypothesis on the error in 4 imply that the distancs

i+l




from “1“11»1) to the boundary of Ii is less thsn or equal to

(7.50 + 2090 0%,

- Consequently,

. _ at (4) 173 ,.3
s () - a,1 (G0 + s )b .

+
Case 9.4: Assume that (4, ,.4.) ¢ B, and d, is imcressed to d,.

It d: £ t'(xi). then we again have that
+ (4) 3
0< £(x) ~ 8y < £0x) - 4, < Gy o Miyd,

On the other hand, if d‘; 2 £'(x,), then

0< d: - f'(‘i) £ d: £ ("f(‘)l. + ux(c.ll.f“’l.))zhso

which follows from an argument similar to the ome used in Case 3.4 after

noting that

(4) (4 3
4.y £33, + (6B 0 + maxle, 83000 Dy,

(]
N LT B e T o] gAY 1 1 pgh Fem

Q.E.D.




